Nonlinear Integrable Systems Related to Arbitrary Space-time Dependence of the Spectral Transform
نویسنده
چکیده
We propose a general algebraic analytic scheme for the spectral transform of solutions of nonlinear evolution equations. This allows us to give the general integrable evolution corresponding to an arbitrary time and space dependence of the spectral transform (in general nonlinear and with non-analytic dispersion relations). The main theorem is that the compatiblity conditions gives always a true nonlinear evolution because it can always be written as an identity between polynomials in the spectral variable k. This general result is then used to obtain first a method to generate a new class of solutions to the nonlinear Schrödinger equation, and second to construct the spectral transform theory for solving initial-boundary value problems for resonant wave-coupling processes (like self-induced transparency in two-level media, or stimulated Brillouin scattering of plasma waves or else stimulated Raman scattering in nonlinear optics etc...). Preprint PM94/01 PACS # 02.30 Jr, 03.40 Kf
منابع مشابه
Linearizing Integral Transform and Partial Difference Equations
A linearizing integral transform is proposed which relates solutions of a spectral problem associated with a class of inte-grable partial difference equations to any given solution of the spectral problem. Examples of this class are lattice versions of the isotropic Heisenberg spin chain, the nonlinear SchrSdinger equation and the (complex) sine-Gordon equation. 1. Introduction. Recently a dire...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کامل-
Consider the semidirect product group H ×? K, where H and K are two arbitrary locally compact groups and K is also abelian. We introduce the continuous wavelet transform associated to some square integrable representations H ×? K. Moreover, we try to obtain a concrete form for admissible vectors of these integrable representations.
متن کاملAn Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients
In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...
متن کاملPerturbation theory for nearly integrable multi-component nonlinear PDEs
The Riemann-Hilbert problem associated with the integrable PDE is used as a nonlinear transformation of the nearly integrable PDE to the spectral space. The temporal evolution of the spectral data is derived with account for arbitrary perturbations and is given in the form of exact equations, which generate the sequence of approximate ODEs in successive orders with respect to the perturbation. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994